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2.	PUBLIC	SUMMARY	
	
This	project	has	generated	a	series	of	freely	available	datasets	that	provide	projections	of	climate	change	
at	appropriate	spatial	scales	that	can	directly	address	specific	management	questions.		These	climate	
change	projections	are	the	result	of	“downscaling”	output	from	global	climate	models	(GCMs)	that	
formed	the	basis	of	many	conclusions	in	the	Intergovernmental	Panel	on	Climate	Change	(IPCC)	
Assessment	Report	5	(AR5).	The	datasets	include	projections	of	climate	variables	in	addition	to	daily	
temperature	and	precipitation	such	as	surface	winds,	humidity	and	solar	radiation	that	are	needed	in	
hydrologic	and	ecological	modeling.	Two	products,	one	at	a	4-km	resolution,	the	other	at	a	6-km	
resolution,	cover	the	continental	United	States	have	been	completed	and	are	available	through	
dataservers	including	https://www.northwestknowledge.net/	
	
Moreover,	an	evaluation	was	done	of	how	well	the	GCMs	reproduce	the	historical	climate	of	Southeast	US	
and	surrounding	region.		This	evaluation	can	be	used	as	one	source	of	information	when	a	user	is	faced	
with	selecting	a	small	number	of	climate	projections	from	the	larger	set	of	available	projections	for	an	
impacts	assessment.	
	
Collectively,	the	guidance	on	the	credibility	of	GCMs	over	the	southeastern	US	and	the	downscaled	
datasets	provide	necessary	information	and	data	to	develop	strategies	for	coping	with	climate	change.	
	
	
3.	TECHNICAL	SUMMARY	
	
Downscaling	methods	are	used	to	bridge	the	spatial	mismatch	and	biases	between	output	from	global	
climate	models	(GCMs	–	typical	spatial	resolution	is	several	degrees	latitude	by	longitude)	and	input	
required	by	secondary	modeling	applications.	We	advanced	several	details	of	statistical	downscaling	to	
facilitate	that	downscaled	data	represent	the	signal	of	changes	as	simulated	by	the	GCM	while	retaining	
many	of	the	properties	of	the	training	datasets	to	ensure	compatibility	for	impacts	modeling.	
	
In	addition	to	downscaling	GCMs,	we	evaluated	the	GCMs	with	respect	to	their	ability	to	reproduce	the	
observed	20th	century	climate	for	the	Southeast	United	States	(US)	and	surroundings.		A	suite	of	statistics	
that	characterize	various	aspects	of	the	regional	climate	was	calculated	from	both	model	simulations	and	
observation-based	datasets.	Lastly,	GCMs	models	were	ranked	by	their	fidelity	to	the	observations.	
	



	
4.	PURPOSE	AND	OBJECTIVES:		
	
GCM	Downscaling	
	
The	first	objective	of	this	project	was	to	generate	a	more	physically	consistent	and	detailed	set	of	
projected	meteorological	variables	than	found	in	existing	downscaled	climate	projections.	While	previous	
downscaling	efforts	such	as	Bias-Correction	Statistical	Disaggregation	(BCSD)	and	Bias-Correction	
Constructed	Analogs	(BCCA)	are	undoubtedly	valuable,	they	have	limitations	or	drawbacks	that	may	make	
them	less	desirable	for	particular	uses.	These	limitations	include	a	restricted	set	of	variables	(typically	only	
temperature	and	precipitation),	inability	to	utilize	daily	GCM	output	and	preserve	co-variability	across	
variables,	and	issues	involving	the	treatment	of	model	biases.		The	Multivariate	Adaptive	Constructed	
Analogues	(MACA,	Abatzoglou	and	Brown	2012),	and	augmentations	therefore	(Hegewisch	and	
Abatzoglou,	forthcoming)	largely	overcome	some	of	these	limitations	and	allow	for	a	more	
comprehensive	set	of	downscaled	climate	products.	However,	MACA	is	not	a	panacea	for	downscaling,	as	
it	cannot	‘correct’	for	a	global	climate	model’s	deficiency	in	simulating	spatial	patterns	of	convective	
precipitation,	or	resolve	changes	in	climate	that	arise	from	atmosphere-surface	feedbacks.	Likewise,	
resolving	the	spatial	details	of	convectively	driven	precipitation	is	challenging	for	all	downscaling	methods.		
	
GCM	Evaluation	
	
Climate	simulations	from	global	climate	models	(GCMs)	are	often	relied	upon	to	provide	plausible	future	
climate	scenarios	in	climate	change	impacts	assessments	at	regional	and	local	scales.		Frequently,	users	
are	constrained	to	select	a	subset	of	the	many	climate	projections	available	from	a	large	suite	of	GCMs.		
Model	fidelity	is	one	criterion	that	may	be	used	to	wean	the	large	pool	of	available	projections.		Our	
second	objective	of	the	project	was	to	aid	users	in	selecting	GCM	simulations	by	evaluating	how	individual	
GCMs	performed	with	respect	to	reproducing	the	historical	20th-century	climate	of	the	southeast	USA.	
	
	
5.	ORGANIZATION	AND	APPROACH	
	
GCM	Downscaling	
	
Climate	scenarios	from	20	CMIP5	GCMs	with	the	requisite	daily	data	were	statistically	downscaled	using	
the	Multivariate	Adaptive	Constructed	Analogues	(MACA,	Abatzoglou	and	Brown	2012),	1950-2005	for	
historical	runs	and	2006-2099	for	RCP	4.5	and	8.5	(Table	1).	Outputs	from	two	GCMs	that	had	360-day	
years	were	rescaled	to	conform	to	a	365-day	year	calendar.		
	
Two	downscaling	products	were	produced:	macav2livneh	and	macav2metdata.	First,	building	off	the	
downscaling	performed	for	the	Northwest	Climate	Science	Center	(which	used	“training”	data	from	the	
surface	gridded	meteorological	dataset	of	Livneh	et	al.	(2013)	at	1/16th-degree	resolution),	we	expanded	
the	downscaling	domain	from	the	Northwest	US	to	the	contiguous	United	States	to	create	the	
macav2livneh	downscaled	product.	Second,	utilizing	the	‘training’	data	from	the	gridded	meteorological	
dataset	of	Abatzoglou	(2013),	that	includes	additional	variables	such	as	downward	shortwave	radiation	
and	the	surface,	humidity,	and	10-m	wind	velocity	at	a	common	1/24th-degree	spatial	resolution,	we	
created	the	macav2metdata	product.	The	list	of	variables	that	are	available	from	these	products	is	
provided	in	Table	2.	
	
For	 this	work,	we	 augmented	 the	 original	MACA	 downscaling	 approach	 to	 better	 address	 some	 of	 the	
biases	 inherent	 in	 GCMs.	 The	 updates	 included	 (i)	 continuous	 trend	 preservation	 of	 the	 original	 GCM	
signal	using	a	31-year,	21-day	smoothing	window,	2)	use	of	a	reduced	set	of	analog	patterns	but	inclusion	
of	 a	 residual	 term	 from	 the	 constructed	 analogs,	 and	 3)	 joint	 bias	 correction	 of	 temperature	 and	
precipitation	 to	 remove	 intermodel	biases	 in	 temperature	coincident	with	precipitation	 (Hegewisch	and	



Abatzoglou,	 forthcoming).	 These	modifications	 resulted	 in	 significant	 improvements	 in	 downscaling,	 as	
seen	in	a	cross-validation	study.		
	
In	summary,	MACA	was	chosen	for	this	downscaling	over	other	methods	for	the	following	reasons:	
	
•	MACA	uses	daily	output	from	GCMs	and	is	more	readily	able	to	capture	changes	in	higher-order	climate	
statistics	(e.g.,	extremes)	than	methods	that	temporally	disaggregate	from	monthly	projections.	
	
•	 The	 spatial	 downscaling	 from	 MACA	 uses	 observed	 spatial	 patterns	 rather	 than	 using	 interpolation	
approaches.	
	
•	MACA	 can	 be	 extended	 to	multiple	 variables.	We	 downscaled	 daily	 temperature,	 precipitation,	wind	
speed,	downward	shortwave	radiation	and	humidity.	
	
•	MACA	downscales	 some	of	 the	 variables	 in	 sets	 in	 order	 to	 preserve	 the	 dependencies	 between	 the	
variables.	 For	 example,	 the	 downscaling	 of	 temperature	 jointly	 with	 precipitation	 has	 been	 seen	 to	
produce	better	results	in	capturing	historical	statistics	of	snowfall	and	correct	for	model	biases	specific	to	
precipitating	days	and	thus	precipitation	phase.		
	
GCM	Evaluation	
	
Retrospective	(i.e.,	20th	century)	climate	scenarios	from	41	CMIP5	GCMs	were	examined.		We	compared	
relevant	20th-century	observations	with	 the	suite	of	CMIP5	global	model	 results	according	to	a	suite	of	
metrics	 designed	 to	 determine	 their	 suitability	 for	 Southeast	 climate	 studies	 following	 the	 procedures	
outlined	by	Rupp	et	al.	(2013).		
	
The	 metrics	 listed	 in	 Table	 1	 were	 calculated	 from	 up	 to	 5	 observational	 datasets	 and	 all	 the	 GCM-
simulated	 datasets	 of	 temperature	 and	 precipitation.	 	 The	 GCMs	were	 then	 ranked	 according	 to	 their	
overall	fidelity	with	respect	to	observations.			
	
	
6.	PROJECT	RESULTS	
	
GCM	Downscaling	
	
Between	the	two	downscaling	products	of	macav2livneh	and	macav2metdata,	a	total	of	26	terabytes	of	
downscaled	data	were	produced.	Although	there	are	numerous	ways	to	analyze	the	data,	we	provide	a	
couple	examples	here	that	can	be	explored	 in	further	detail	 through	our	webpage	(see	Sec.	9).	Figure	1	
shows	 the	 20-model	 mean	 projected	 change	 in	 Mar-May	 downward	 shortwave	 radiation	 and	
precipitation	 for	 years	 2070-2099	 of	 experiment	 RCP	 8.5	with	 respect	 to	 late	 20th	 century	 climatology.	
Figure	 2	 shows	 differential	 rates	 of	 warming	 between	 the	 coldest	 day	 of	 the	winter	 and	mean	winter	
temperature.	 This	 elucidates	 the	 additional	 type	 of	 information	 that	 can	 be	 gleaned	 from	 MACA	
downscaling	that	incorporates	daily	GCM	projections.	
	
GCM	Evaluation	
	
The	project	generated	a	large	number	of	climate	metrics	per	GCM	and	observational	dataset.		These	have	
been	presented	in	figures	that	may	be	used	to	compare	among	GCMs	or	to	assess	the	ability	of	the	CMIP5	
models	as	a	whole	to	faithfully	simulate	the	climate	of	the	southeastern	US.		As	an	example,	Figure	3	gives	
a	means	 of	 comparing	 all	 GCMs	 and	 all	 metrics	 at	 once,	 and	 thus	 can	 be	 used	 as	 an	 initial	 means	 of	
identifying	GCMs	 that	 do	 poorly	 in	 a	 particular	metric,	 of	 set	 of	metrics,	 that	may	 be	 of	 interest	 for	 a	
particular	use.		A	detailed	assessment	of	the	GCMs	with	respect	to	each	metric	is	provided	in	the	technical	
report	“An	Evaluation	of	CMIP5	20th	Century	Climate	Simulations	for	the	Southeast	USA”.	



	
7.	ANALYSIS	AND	FINDINGS		
	
GCM	Downscaling	
	
Downscaled	climate	projections	have	all	been	converted	to	NetCDF	format	using	CF	metadata	standards	
to	 ensure	 compatibility	 across	 platforms.	We	 provide	 both	 daily	 and	 aggregated	monthly	NetCDF	 files,	
acknowledging	 the	 different	 needs	 of	 end	 users.	 All	 datasets	 have	 been	 transferred	 to	 the	 Northwest	
Knowledge	 Network	 (NKN)	 including	 the	 Regional	 Approaches	 to	 Climate	 Change	 (REACCH)	 subserver.	
NKN	provides	several	services	to	aid	users	in	acquiring	the	hosted	data.		
	
First,	 NKN	 provides	 a	 data	 catalog	 to	 aid	 users	 in	 finding	 information	 about	 the	 data,	 as	 well	 as	 to	
manually	download	single	data	files	(or	subsets)	from	the	internet	in	different	formats	(i.e.	ascii,	NetCDF).	
The	data	catalogs	for	the	2	downscaled	products	are:		
• http://thredds.northwestknowledge.net:8080/thredds/catalog/NWCSC_INTEGRATED_SCENARIO
S_ALL_CLIMATE/macav2livneh/catalog.html	
• http://reacchpna.org/thredds/reacch_climate_CMIP5_macav2_catalog.html	
	
Second,	NKN	provides	THREDDS	services	to	the	hosted	datafiles.	THREDDS	enables	users	to	more	easily	
download	spatial/temporal	subsets	of	 the	data,	 including	the	use	of	OPeNDAP	to	extract	subsets	of	 the	
data	from	within	the	user’s	favorite	software	program	(R,	MATLAB,	Python,	IDL,	etc.).			
	
Lastly,	 though	 each	 of	 the	 raw	 NetCDF	 files	 represent	 only	 5	 or	 10-year	 time	 spans	 of	 data,	 NKN	 has	
aggregated	all	the	yearly	files	for	each	of	the	scenarios	(historical,	rcp45,	rcp85)	into	a	single	pointer	file,	
which	can	be	used	to	aid	users	for	accessing	all	years	of	the	data.		
	
Through	NKN’s	services,	users	are	able	to	download	spatial	subsets	of	the	data,	as	well	as	each	daily	
variable	aggregated	to	monthly	averages.		Data	storage	and	access	for	the	Southeast	datasets	would	be	
decided	upon	consultation	with	SECSC.	
	
GCM	Evaluation	
	
The	ranking	of	GMCs	is	not	a	straightforward	endeavor.		Any	ranking	will	vary	with	the	particular	metric,	
or	set	of	metrics,	chosen.		Also,	in	some	cases,	metrics	will	be	physically	related	to	the	extent	they	provide	
redundant	 information.	 	 Finally,	 we	 may	 have	 low	 large	 uncertainties	 about	 the	 accuracy	 of	 our	
estimation	of	the	metric	itself.			Giving	consideration	to	the	latter	two	issues,	we	ranked	the	models	using	
a	methodology	 that	 accounted	 for	 information	 redundancy	 and	 favored	 the	metrics	we	 believed	were	
more	 reliable.	 	 Using	 the	 approach,	 we	 found	 that	 models	 from	 the	 CCSM/CESM1,	 CNRM,	 CMCC,	
HadGEM2,	GISS-E2,	and	MPI-ESM	families	ranked	higher	than	the	others	(Figure	4).		This	overall	ranking,	
however,	 is	 provided	 as	 a	 suggestion.	 	 Individuals	 can	 examine	 the	 results	 presented	 in	 the	 technical	
report	and	use	these	a	guide	to	a	model	selection	suited	to	their	particular	needs	and	objectives.	
	
	
9.	MANAGEMENT	APPLICATIONS	AND	PRODUCTS	
	
In	addition	to	downscaling	the	datasets,	we	have	created	a	web	interface	for	potential	data	users	to	learn	
more	 about	 the	 downscaling	 methodology	 and	 visualize	 certain	 aspects	 of	 the	 datasets	 at	
http://climate.northwestknowledge.net/MACA/	
This	website	provides	several	visualization	tools,	including	the	ability	for	users	to	examine	spatial	patterns	
of	 change	 for	 the	 variables	 that	 have	 been	 downscaled	 across	 seasons,	 variable	 and	 scenarios.	 These	
decision	 support	 tools	are	of	utility	both	 for	direct	users	of	 the	 climate	datasets,	 as	well	 as	 for	general	
depiction	of	projections	across	the	region.		Moreover,	the	technical	report	“An	Evaluation	of	CMIP5	20th	



Century	Climate	Simulations	for	the	Southeast	USA”	will	be	available	on	website	once	report	has	obtained	
OFR	citation.		
	
We	are	currently	working	on	a	data	portal	to	aid	users	in	downloading	spatial	subsets	of	the	downscaled	
daily	data,	as	well	as	aggregations	of	each	variable	to	monthly	values,	in	formats	such	as	csv.			
	
	
10.	OUTREACH	
	
We	have	continued	to	update	our	webpage	to	provide	visualizations,	guidance	and	data.	
	
	
Presentations	
	
Katherine	Hegewisch,	John	Abatzoglou,	David	Rupp,	Phil	Mote.	"	Statistically	downscaled	climate	data	
using	the	Multivariate	Adaptive	Constructed	Analogs	approach	"	5th	annual	Pacific	Northwest	Climate	
Science	Conference	(PNW	CSC),	Sept,	2014	Seattle				
	
Publications	
	
Hegewisch,	K.C.,	Abatzoglou,	J.T.,	‘An	improved	Multivariate	Adaptive	Constructed	Analogs	(MACA)	
Statistical	Downscaling	Method’,	in	preparation.	
	
Rupp,	D.E.,	2015,	An Evaluation of CMIP5 20th Century Climate Simulations for the 
Southeast USA,	USGS	Open	File	Report	XXXXX	
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Table	1.	Available	downscaled	CMIP5	global	
climate	simulations	using	MACA,	1950-2099,	
RCP4.5	and	RCP8.5	

BCC-CSM1-1	

BCC-CSM1-1-M	

BNU-ESM		

CanESM2	

CCSM4	

CNRM-CM5	

CSIRO-Mk3-6-0	

GFDL-ESM2G	

GFDL-ESM2M	

HadGEM2-CC	

HadGEM2-ES	

INMCM4	

IPSL-CM5A-LR	

IPSL-CM5A-MR	

IPSL-CM5B-LR	

MIROC5	

MIROC-ESM	

MIROC-ESM-CHEM	

MRI-CGCM3	

NorESM1-M	



	
	
	

Table	2.	Downscaled	variables	

Variable	 Abbreviation	 Height	

Temperature,	maximum	 tasmax	 2	m	

Temperature,	minimum	 tasmin	 2	m	

Precipitation	rate	 pr	 Surface	

Relative	humidity,	maximum	 rhsmax	 2	m	

Relative	humidity,	minimum	 rhsmin	 2	m	

Specific	humidity	 huss	 2	m	

Wind,	speed	 was	 10	m	

Wind,	eastward	 vas	 10	m	

Wind,	eastward	 vas	 10	m	

Downwelling	solar	radiation	 rsds	 Surface	

	 	 	
	
	
	
	
	
	
	
	 	



Table	 3.	 Definitions	 of	 global	 climate	 performance	 metrics,	 the	 confidence	 in	 the	 metrics	 for	 model	
ranking,	and	observational	datasets	used	by	metric.	

Metrica	 Confidence	
category	

Description		 Observation	
datasets	

Mean-T	
Mean-P	

Highest	
Highest	

Mean	 annual	 temperature	 (T)	 and	
precipitation	(P),	1960-1999	

CRU,	PRISM,	
UDelaware,	
ERA40d,	NCEPd	

DTR-MMMc	 Highest	 Mean	diurnal	temperature	range,	1950-1999	 CRUe,	PRISMe,	NCEP	

SeasonAmp-T	
SeasonAmp-P	

Highest	
Higher	

Mean	 amplitude	 of	 seasonal	 cycle	 as	 the	
difference	 between	 warmest	 and	 coldest	
month	 (T),	 or	wettest	 and	 driest	month	 (P).	
Monthly	 precipitation	 calculated	 as	
percentage	of	mean	annual	total,	1960-1999.	

CRU,	PRISM,	
UDelaware,	
ERA40d,	NCEPd	

SpaceCor-MMM-Tb,c	
SpaceCor-MMM-Pb,c	

Highest	
Higher	

Correlation	 of	 simulated	 with	 observed	 the	
mean	spatial	pattern,	1960-1999.	

ERA40,	NCEPe	

SpaceSD-MMM-	Tb,c	
SpaceSD-MMM-Pb,c	

Highest	
Higher	

Standard	 deviation	 of	 the	 mean	 spatial	
pattern,	 1960-1999.	 	 All	 standard	deviations	
are	normalized	by	 the	 standard	deviation	of	
the	observed	pattern.	

ERA40,	NCEPe	

TimeVar.1-T	
TimeVar.8-T	

Lower	
Lowest	

Variance	 of	 temperature	 calculated	 at	
frequencies	 (time	 periods	 of	 aggregation)	
ranging	for	N	=	1	and	8	years,	1901-1999.	

CRU,	PRISM,	
UDelaware	

TimeCV.1-P	
TimeCV.8-P	

Lower	
Lowest	

Coefficient	 of	 variation	 (CV)	 of	 precipitation	
calculated	 at	 frequencies	 (time	 periods	 of	
aggregation)	 ranging	 for	N	 =	 1	 and	 8	 water	
years,	1902-1999.	

CRU,	PRISM,	
UDelaware	

TimeVar-MMM-Tc	 Lower	 Variance	 of	 seasonal	 mean	 temperature,	
1901-1999.	

CRU,	PRISM,	
UDelaware	

TimeCV-MMM-Pc	 Lower	 Coefficient	 of	 variation	 of	 seasonal	 mean	
precipitation,	1901-1999.	

CRU,	PRISM,	
UDelaware	

Trend-T	
Trend-P	

Lower	
Lowest	

Linear	 trend	 of	 annual	 temperature	 and	
precipitation,	1901-1999.	

CRU,	PRISM,	
UDelaware	

ENSO-T	
ENSO-P	

Lower	
Lowest	

Correlation	 of	 winter	 temperature	 and	
precipitation	with	Niño3.4	index,	1901-1999.	

CRU,	PRISM,	
UDelaware	

Hurst-T	
Hurst-P	

Lowest	
Lowest	

Hurst	 exponent	 using	 monthly	 difference	
anomalies	 (T)	 or	 fractional	 anomalies	 	 (P),	
1901-1999.	

CRU,	PRISM,	
UDelaware	

aUnless	otherwise	noted,	metrics	are	average	over	Southeast	US.	bExpanded	domain:	115°W	–	50°W,	15°N	
–	55°N.	
cMMM	is	the	season	designation:	DJF,	MAM,	JJA,	and	SON.	
dTemperature	only	used	in	ranking,	not	precipitation.	eNot	used	in	ranking.	
	
	
	



	
	

	

	
	
	
Figure	1:	Projected	20	model	mean	change	in	(top)	Mar-May	downward	radiation	and	in	(top)	Dec-Feb	
precipitation	 for	 years	 2070-2099	 of	 experiment	 RCP8.5	 versus	 the	 historical	 climate	 experiment	 for	
1950-2005	from	downscaled	CMIP5	climate	model	outputs.			



	
	
Figure	2:	Projected	20	model	mean	change	(in	degrees	C)	in	(top)	coldest	minimum	temperature	(TMIN)	
and	(bottom)	average	minimum	temperature	(TMIN)	each	winter	(Dec-Feb)	for	years	2040-2069	of	
experiment	RCP8.5	versus	the	historical	climate	experiment	for	model	years	1971-2000	.	
	
	



Figure	3:		Relative	error	of	the	ensemble	mean	of	each	metric	for	each	CMIP5	GCM.		Models	are	ordered	
from	least	(left)	to	most	(right)	total	relative	error,	where	total	relative	error	is	the	sum	of	relative	errors	
from	all	metrics.	
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Figure	4:		41	CMIP5	GCMs	ranked	according	to	normalized	error	score	from	EOF	analysis	of	performance	
metrics.	Ranking	is	based	on	the	first	5	principal	components	(filled	blue	circles).	The	open	symbols	show	
the	models’	error	scores	using	the	first	2,	4,	and	all	22	principal	components	(PCs).		Relative	error	of	the	
ensemble	mean	of	each	metric	for	each	CMIP5	GCM.		Models	are	ordered	from	least	(left)	to	most	(right)	
total	relative	error,	where	total	relative	error	is	the	sum	of	relative	errors	from	all	metrics.	


